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ABSTRACT

In the book, "The Special Functions and Their Approximations," a
class of rational approximations for the generalized hypergeometric functions
,• was developed. Now I,(z) can be expressed in terms of a OF, or a F

Thus, corresponding to each form and a choice of certain free parameters
there is a rational approximation for Iv(z) . J. C. P. Miller has shown
that Im+v(z), m a positive integer or zero, can be approximated by use
of the recursion formula for Im+v(z) applied in the backward direction.
If this scheme is used together with each of two certain normalization
relations, then rational approximations for l,(z) emerge and the-- rational
approximations are identical with those noted above. The analysis leads to
a new interpretation of the baclzard recursion scheme. We also study a
third case for the evaluation of Im+V(z) , m a positi're integer, by the
backward recursion process which presumes that I,(z) is known. In each

instance a closed form expression for the truncation error is developed
which leads to a very effective a priori estimate of the error. For each

case it is shown that the round-off error is insignificant.
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INTRODUCTION

SIn my treatise on the special functions [3 , a class of rational

approximation. for the generalized hypergeometric function pFq was

developed. These approyimations depend on a number of free parameters.
Since Il(z) can be expressed in terms of a OF, or a IFi , there is a

particular rational approximation corresponding to each of these hyper-

geometric forms and a choice of the aforementioned free parameters.

The idea of using the recursion formula for 1,(z) in the back-

ward direction to generate values of I (z) is due to J. C. P. Miller [2].
It is a very powerful tool and the notion has created considerable interest;

see [1, Vol. 2, pp. 159-166], [3,4] and the references quoted in these

sources. The Miller scheme together with two certain normalization relations
also gives rise to rational approximations.

In a conversation Jerry L. Fields conjectured that the specific

rational approximations noted in the first paragraph are identical to the

certain rational approximations which emerge by use of the backward recur-

rence scheme notedAla-he ec-ond paragraph. In the present paper, we, verif4K.

this conjecture. In addition, we develop a new interpretation of the Miller
method. l also study a third normalization technique which is sometimes
used with the backward recursion scheme. A cjbsed form analytical expression
of the error for each case is derived. Thes4 equations are valuable as they

lead to simple asymptotic estimates of the error which are very realistic
and easy to apply in practice. It is demonstrdted that the round-off error

is insignificant. The paper closes with some numerical examples.

In the main body of the Taper, we find it convenient to deal with

the modified Bessel function I,(z) . The results are valid for all z in
the cut complex z-plane - • < arg z _- T and in the cut complex v-plane,

iarg v• < r . In this connection, we should note that I_,(z) = IV(z) if
v is an integer or zero. Thus we suppose throughout that v is not a

negative integer. Actually, it is sufficient to have 0 : arg z s r/2 in
view of the definition of I,(z) . Also it is sufficient to have R(v) > -1

for if l_(z) and _,(z) are kn-own, computations of _m_(z) ,

m = a positive integer, can be done by use of the recursion formula for

I_m_V(z) . All of this not withstanding, it is convenient to restate some
of the key equations to facilitate application of our results to the Bessel

function J,(z) . This is done near the end of the paper.
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PATIONAL APPRCCmAIONS FOR .I,(z)

Case I. We begin with the representation

IV(z) Fz2 (V+i;z2/k)()
F(vi+1) 0'1

Theorem 1.

` /2)Vn(Z) S~z)r~z (v+l) hn(z)+Rz) z) )-h"(z)()

=n (-n )k('n+X)k

k0--- (v+1)k:

X 4/z 2 
, v+2-6 68 0or 6 1, (4)

h n(z.) 3 F0 (-fli,n+X,,l;X) ,(5)

or

hn(z) n (.')n(ntvýa.. 8)nxn 0Fý,(-2n-l+6-v;X-l) .(6)

Here for convenience we introduce the notation

p q pq(Pq)k k!

and our usual shorthand notation for generalized hypergeometric series
applies, see [i, Vol.i 1, pp. 41, 42]. Further,

Sn(z)- zVn)

1 -6-R(vj) if -1 < R(9) 9 1-8 6 0 if R(v) k 1-8 , (8)

2



1n(z) =(..)nn!(n+.%rI2-6)8)nxnl+0(nl) (9)

whence

()(Z2) r(n+)L) -J)[~~1)]>-l (0
RnzJ r(v+l)n~r(2n+X) 0(n" [,0( R(v)>-1 (0

00-

and so, for z and v fixed, R('v) > -1, the approximation process is
convergent.

Proof: Equations (2)-(5) follow from [1, Vol. 2, p. 96] with

a 0 , f =g =0 , p = 0 , q = 1 , p1 =v-

1-8 , -v , X. = v+2 -6 , 5 = 0 or 8 =1 ,y =z

and z replaced by z 2/4 *Notice that the 3F0  series for hn(z) in
(5) turned around is the alternative form for hn(z) in (6).

Equation (8) follows from [1, Vol. 2, p. 103] while (9) follows
from (6), see also [1, Vol. 1, pp. 2.599-2611, and (10) is now obvious.

Remark: In the proof developed in the cited source, it was necessary to
suppose that R(v) > -1 . Later, we present a new formulation of the error
which shows that v is unrestricted save that v is not a negative integer.
So throughout this work v is arbitrary except as just indicated. Compu-
tation wise, the exception is no burden since I..n(z) =In(z)

Theorem 2. Both *n(z) and hn(z) satisfy the same recurrence formula

hn(z) + (C1+XD,)hn-l(z) + (C2+XfD2)hn-2(z) + C03hn-3(z) = 0

C1 - (2n+X-4)(n+X-1) LD) =+-

C-0 (n-i) (n+2Xi-4)(2n+X-l) D2 (n-l)(2n+X-2) (2n+X-1)(n+X_-3)
02 (n+A-l)(n+X-2)(2n-'A-5) '(n+%-l)(n+X-2)



C- (n-i) (n-2) (2n+X -2) (2n+-X -)
C3  (2n+X-5)(2n+X-4)(n+X-1)(n+X-2)'()

where n 2 3

?ro,,: See [1, Vol. 2, Ch. 1]

Case II. Next we consider

(z/2)'e'
I\,(z) pv'1) Fl(v+-ffl;2v+l;-2z) (12)

Theorem 3.

I'(z) = (z/2))ez ý,~z + Vn z ,Vz =Wn(z) (3

"I(v+1) gn(z) + gn)v~ ~ z )(3

n' -n~k(n+29+2)i.(v+-!} nkn2v2'kl 2
~n() 7- (2\;+l)k(v4-3/2)kk! (F v+3/2+k 'I ) (14)0

k--0

gn(z) 3 F1 Q÷+3 / 2  , 15

or

gn(z) =n!(n+2v+-2) n 1F~ (-nn-v2- 4\1 2 (16)
(2z)fl(v-i-3/7,)1, -2 2  2

Futher,

W z)=(-z/2) e z 0(nu)

1 ,) 1)

l-2R(V) if -1 <~ R(V) U) = 0 if' B(v) Z. 2 (1.7)

Also,

n!(n+t2v+2)nez [ (z2  + + , (18

~()=(2z) (v+3/2) n [ nv1 (n+v 1)2
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: whence w>n-1z/2)(2z) (v+3/2) (n)

Vn(Z) r(v+l)(n+2v+2)nn: R) > -

and for z and v fixed, R(v) > -1 , the approximation process is con-
vergent.

Proof: Equations (13)-(I5) follow from Ei, Vol. 2, p. 96] with

a= O, f = g =-0 , p = q = 1 , a 21 ,p= 2v+l,

S= 1 , • = 2v , X 2%i-2 , y = z

and z replaced by -2z . Equation (16) is equation (15) turned around.
Equation (17) comes from [l, Vol. 2, p. 103] while (18) comes from (16),
see also [1, Vol. 1, pp. 133, 259-261]. Thus (19) is at hand.

Remark: See the remark after Theorem I.

Theorem 4. Both gn(Z) and gn(Z) satisfy the same recurrence formula

gn (z) + (Ei+2Fl/z)gn 1l(z) + (E2 +2F 2/z)gn_ 2 (z) + E3 gn_ 3 (z) - 0,

-(n+v)(n+2r-l) F = 4n(n+ )E1 = (n+v-l) (n+~v+ 1) 1 l n+ P_•+l 1

-n(n-1) _-4(n-i '(n+v)(n+2v-l)
E2 = (n+2v')(n+2v+l) F 2 - (n+2v)(n+2v+l)

EP - (n-l) (n-2) (n+v) (20)
3 (n+2v)(n+2v+l))(n+v-l).'

where n a 3

Proof: See [i, Vol. 2, Ch. 12].
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BACKWPJD RECURRENCE SCHEMATA FOR GENERATING IV(z)

The technique for generating IV(z) by use of the recurrence
formula for Il(z) employed in tb.a backward direction is as follows. The
recurrence formula

(z (m+y~l)
Cm,v(z) _ z :m+l,,(z) + C nm+2,v(z) (21)

is satisfied by

i(m+•I)r

Im+v(z) and e Km+v(z) (22)

(,T/2)
Km+v(z) = sin(m+v)j[I-m.V(z) - Im+V(z) (23)

In this work, we always take m a positive integer or zero. For later con-
venience, we also record the formula

Fz 4(m+v~-l)(m+v+2) 2(vI2 XM+V+l) () (24)

L' •z=z2 m++ m+2,v(z)" (m+v+3) 'Pm+4,v(z)

Let N be a positive integer and consider that solution of (21),
call it C(N)(z) with m • N+2 such that

m, v

(N) (N) =1N+2 . (25)

Clearly cp(N)(z) is a linear combination of the solutions (22) subject to
the conditions (25) and we readily find that

CP(N)(z) = Z[I+()N2•z *-iTT(N+l-m).(6
m,( m+v(z)KN+2 +\(z) + ei ( m +(z)IN+2 +,(z)] (26)

in view of the Wronskian relation

I (z)K,+I(z) + I,+I(z)K (z) 1/z . (27)

6



Suppose that we are given the normalization relation

-(z) WkIk+v(z) (28)
• k-- 0

S~Put

e(xr) (Z) l (N (29)
S (z) ZI wkk,v(z)k=O

and consider

"(N)(,)•(N), B(z •m,v;z)

im+. ( =z) (N))z) N+ 1 (30)

We can now prove

Theorem 5. lir i(N) (z) I (z) , 0 g m < N+I . (31)
N - m+V m+V

Proof: Using (26) and (29), we can write

((z) [Im+v(Z)-(-)N+m IN+v+2 (z)Kn+V(z)]

(N) () - () KNi(+2(z)32)N+I\ Nl
Y-- 'ký"+(z)_(-) N+,,+2(z) "-(. k++lz

k 0 
KN, 2 (z) k0o

and the result follows from the known behavior of the Bessel functions
for large order. That is,

I z= 1+(-) (33)M+~)ýr(m+V+l) [+C )

Km+v(z) = J(z/2) r(m--) [1+0(m')] (3)

7,



I
We next show that (N)(z) , m = N+,N,N-I,. can be repre-Im

sented in terms of a generalizea hypergeometric polynomial. We then prove
that for two specific choices of 0(z) , the series (29) can also be expressed
in terms of a generalized hypergeometrc~)polynomial; and further, for the
two choices of 8(z), respectively, i. (z) and the rational approxima-
tions *n(Z)/hnl(z) and tn(z)/gn(z) , respectively, axe equal. Actually,
we first state and prove theorems for the Case I situation in some detail.
The corresponding theorems for Case II are stated and proofs are omitted
as the details are much akin to their Case I analogs.

Another choice for O(z) previously discussed in the literature
is I (z) . We call this Case III even though the corresponding i.0)(z)
"(N)(' • (N)

Wm,v z )(z)/P'o (z) is not a member of the family of approximations from

which Cases I and II were derived. We defer further analysis of Case III
to a later discussion when we determine closed form error expressions for
all the cases.

HYPERGEOMETRIC REPRESENTATION FOR 4N)(z)

Theorem 6.

(N (z) = 1 , (N(z) = 2(NT ,v+l)
•N+I,, \z Nv z

1+ 4(+ )2 ' (N) (z) =(+v) + 8(N+v-1) 3
9Nvl, (N.) = I_+_=___N-, z 2 ' N-2,V z z 3

(N) 12(N+v-1)2  16(N+v-2)4•N-5,v z2 z4

(N) z 6(N+v-1) 32(N+v-2) 3  32(N+v-3) 5
N.N-4,v- ) = z 5

CP(N) () +24(N+v-2 )2  80(N+vJ-3)4  64(N+,v-4 )6
(N-5, %') 1+ 2 + z4  + 6N''z)z z

(N) 8(N+\;-2) 80(N+v-3) 3  192(N+v-4) 5  128(N+v-5) 7

(N)6,v(z) - z + + 7

etc. (35)



(N) = k-e8 (2n-k-m+l+\+(l-8)e) S 2 . (k+ l-m-c6 •+n (m+1)IXm

W2n.2k+,,,(z) (4/z) Y (2m+29)!

= r2(k+l..8) (2ni-kI-v 1' FI e8 -k,k+14'Tq-e6 ,k-2n-v-(1-8 )e ,2n-k+2+vj+e8 -5 I/4
L z 1 4Fl12+1 1X4

X = 4/z 2 , N = 2n-6 6 = 0 or 6 = 1 , 0 or = ,

f= €5 + (l-e)(l-6) , (36)

where 6 = 0 or 1 according as N is even or odd, respectively. Also

(N)(Z) (2/z) 
2 n-m+l-6 F ( 2n+2 -6+v)I n,v. = (m+v+l) "

2 2 2 2-l +)
+81n m-''"k"n' - -+8 Iz) , (7

-2n-I+6 -v,m+v+l, -2n-1+6+m (

where [p] is the largest integer ! p

Proof: By induction: The Table (35) is readily developed by use of (21)
and the starting conditions (25) and it is easily verified that (36) gives
the polynomials listed in (35). Put (36) with 6 = 1 and e = 0 in (24)
(in (24) replace m by 2n-2k ) . Then after some algebra, it is seen
that the coefficients of like powers of z vanish, which proves (36) for
6 = 1 and e = 0 . To get (36) when 8 = e = 1 , use (21). The case 6 = 0
is similar and we omit the details. Finally, (37) is just a spec.ial case
of (36). To connect these two equations, we set 2n-2k+e = m and choose
e = 0 or 1 according as m is even or odd, respectively.

Remark 1: We have given more polynomials in (35) than are necessary for
the proof. The additional entries are given for convenience.

Remark 2: If in (36), e = 6 = 1 , and if k and v are replaced by k+1
and v+l , respectively, then we get (36) with e = 6 = 0 . Again, if in (36),
e = 0 and 6 = 1, and if v is replaced by v+1 , then we get (36) with

9



HYERQEOMETRIC REPRESENTATIONS FOR 8(N)(z)

AND THE FOYMS FOR i•( z)

Case I. Consider the normalization relation

(Z/2)" (_______________~ z)9(z) r("+I) = r(v+l)k! I21 ,±(z) , v / 0
IC--o0

1 = 10(z) -+ 2 2, (-) kI2k(z) I v o (38)

which is given in [i, Vol. 2, p. 45, Eq. (2)]

Theorem 7.

(z) n (-)k(2kv)r(k+,))
r(-v+l)k 2k,)(z)

= (2/z)1 - ()n(v+l)n+ 3 Fo(-n,n+X,l;X)
n!

= (2/z)I' ('n(!~l) hn(z)n.'

X 4/z 2 , N = 2n-6 , v+2-4 , = 0 or 6 . (39)

Proof: We consider the case 6 1 only as the details fc r 6 = 0 are
similar. We demonstrate that like powers of X in the sums on the first
two lines of (39) are equal. Thus we must show that

hk(V) = Bk(v) , (40)

k r- (2r+k)r(r+v)(-k)r(s+l+)r•(1=Z br , br=r=r L rp(v+l)(kl+v)r(-s)r

10



(-)k(s-k)!:(Vl)k
/

n-mr k , n+m = s (41)

The case k 0 is trivial. Assume k > 0 . Clearly Bk(V) is a poly-
nomial in v of degree k which vanishes if -u U 2 A
straightforward calculation shows that br+b u-r 0 whence hk(v) also
vanishes if u = 1,2,...,k . Next multiply both sides of (40) by
(k+v-l)k-l . Then (40) and (41) take the form

hk(%J = Bk(V) , (42)

k (_)r(2r+_)r(r+v) (_k)r (s+l+v)rr(2k+)
ZIj 2 b* br =
1-- r r r!r(v+l)(-s)rF(k+l+v+r)

B (•)=()k(s'k)"r( 2 x+v)

B (v):r(l) (43)

Now each side of (42) is a polynomial in 9 of degree 2k-1 and *(v)
vanishes for u = 1,2,...,2k-1 . Also hK(v) vanishes for u = 1,2,...,k
If v = -k-v , v = 1,2,...,k-i , then br' 0 for r = 0,l,...,v-l and
b* + b = 0 for j 0,,... ,(k-v)/2 . So h*(v) and B;(v) havej k- k ""2k-i
the same zeros. Further, it is easy to see that the coefficients of v
on both sides of (42) are equal. Hence hk(v) = Bk(v) and so also
hk(v) = Bk(9) for all values of v which proves the theorem.

Theorem 8.

S(-)n(+l)n~-
C(N)(z) = (2/z)I-_6 (_n(Z))n1

(o2) n! n(z)

N = 2n-6 , 6 = 0 or 6 = 1 . (44)

Proof: By induction: Using (4) and (37), we can readily verify the state-
ment for n = 0, 1 and 2 . A straightforward analysis shows that both
sides of (44) satisfy the same recurrence formula which is easily deduced
from (11).

11



From Theorems 7 and 8, and (32) and (37), we have

Theorem 9.

(N) e ',(N)(z)io,(z)n(N)
() (z) =hn(z)

[in M-1+6] n-1+ 8  M+8- 2

(N)(z) m+v F (2n 2 z2

(N) e(z cPm, (z (Z/) 2 3 \-2n-l+6-v,m+v+l,-2n-l+6+m /
"im+v(z) = 0 (N) (z) F (m+'-+ i) A (_2n -i+b -v; z2/4)

(45)

Thus the result produced by use of the recurrence formula for I'(z)
employed in the backward direction together with the normalization relation
(38) and the rational approximation given in (2)-(5) are identical

Case II. From [i, Vol. 2, p. 45, Eq. (5)], we have the normalization
relation

S(z/2)ez " (2k+2v)r(k+2v)

3(z) =r(v+l) k-0' r(2v+•l)k: Ik (z), V / 0

ze = Io(z) + 2 Ik(Z) , v = 0 . (46)

k=-i

Here to avoid confusion, we replace B by C in the notation of equations
(28) and (29).

Proofs for Theorems 10, 11 and 12 given below are akin to those
for Theorems 7, 8, and 9, respectively, and we skip the details.

Theorem 10.

N+l (2k+2,,)r(k42v) (N)(z)
5YN)(z) = 1 r(2v\+l)k: k k,v" "

k=- 0

12



______ F (N1, N+2v+3, 1
=(N+,-): 3 1 I;/ -112Z)

-(N1+1)! gK+l(z) .(7

Theorem 11.

(N) (2+) =

ep0,\(z) =-N-+1) ' ON+Jj (48)

and as a consequence of' (44) and (48), we have

(2\v+2) 2n+ 1_6_ 2 +1 -6 (z) = (2/z) 1-6 -) n(V+l)1.+1-6 *J,(z) ,6 =0 or8 6
(2n+1-6)! n

(49)

Thecrem 12.

98N) (z)9N~(N)
V C) (N)(z) Nlz

n M-1+8 1 M-1+6 M+8

(N) m+v z 23F 22Z

i~z (N) C ( Z) r(mZ/2) (-2n-1+6+m~m+v+l,21-+6 ml

imi-J(Z) (N) z) r m~ v l) 1F 12rn+1- 8 ( 2n-3/2- 'J+81 2

(-4n-3-2v-'26 1 z) (0

AFURTHER INTERPRETATION OF TIM
BACKWARD RECURRENCE PROCESS

Fromn Watson's treatise on Bessel functions [5, p. 295], we can
write

12n+2..6+v(z) = T2n-6,v+2(z)Iv(z) - T2n+i..6 ,v+.I(z)Iv,+l(z) , (51)

13



(Z) = ,(N) ( N = 2n-6, 6 = 0 or 8 = 1 , (52)

where 4(N)(z) is defined by (37). Consider the case 8 0 only. We
put (51) in the form

IV ( z) I 2n+,,+2(') T2n+l,-j+i(z)l

I+() Qn(z) =,Qn(Z)= T. (53)-,)+1(z)T2n,,+2(z) T2n,v+2 (z)

Further, we can put

E (z)n
Qn(Z) F(Z)'

2n+,i+l 2n+v+i
(z/2) T2n+l,V+l (z/2) T2n,vr 2

En(z) r(2n+vi2) , Fn(z) = F(2n+,v+2) (54)

Now it is known [5, p. 302] that for z and v fixed, z/0 ,

lij En(z) = V (z) , lrm Fn(z) = Iv+(z) . (55)
n ---) co n -

From (44) and (52), we have

(z/2) *n(z) (_)n(z/2) 2nhn(z)En(Z) = Ln(z) F(v'-l)hn(Z) ,Ln(z) = n:(n+v+2)n (56

where *n(z) and hn(z) are given by (3) and (5), respectively, with
6 = 0 . But for z and v fixed, z/ 0,

han tn(z) 1, (57)
n .=..3,co

see (9). That is,

(z/2)v (N) (z)
li m E(z) = Jm (z = "P I\(z) (58)

n--).= n-->C r(+l)hn(Z) n--n- r(v+l)e(N)(z)

14



A similar analysis can be made for Fn(z) . Also, a like study can be done
for the Case II scheme. We omit the details.

Further, the above shows that the backward recurrence scheme for
the computation of zI(z)/I,+l(z) is the same as the well-known truncated
continued fraction representation which in turn is the same as the main

diagonal Pad6 approximation for this function.

ERROR ANALYSES

In the first part o$ his section we develop closed form repre-
sentations of the error in ilNv(z) for cases I-III under the assumption'
of exact arithmetic. This type of error arises because N is finite and
is called the truncation error. From each analytical representation of
the error, we deduce an asymptotic estimate of the error which is very
realistic and easy to apply in practice. The results for Cases I and II
when m = 0 are much better than those given by (10) and (19), respectively.
Further, for Cases I and II, if z and v are fixed and n is sufficiently
large with respect to m , the relative error in the approximation for

Im+V(z) is essentially independent of n..

An analytical formulation of the round-off error is developed in
the latter part of this section where it is shown that this source of error
is insignificant. ,

We now turn to a study of the truncation errors.

Case I. Let

(N)(N
E • (• z)= 1+,,(.) - i (z) (59)

(N)
where im+.(z) is given in (45).

15



Theorem 13. If v is not a positive integer or zero,

14N)6r (z/ 2n+2- + 2 •+1
FP -2n-16-'-V -; Z2 /4) ~ ~)r/ 2) 2+ ( 14  ) I (z),F(i 2  1Z2/4)

"( I-m-r(z)2n+2-8+v (z )

5 n+2-v
_ 6 rr(z/2) 2 T 1SZi
r(2n+2-6+v) sin vrr I 2 n28 6(z)

2(-) M+6 (z/P) 2n+2 v+

r(2n+2.-6•v) 12n+2-6+,j(z)Km•v(z)

S6 .2n+2-6+v
(-) (,z/2) I

+ F(2n+f2-8+v) sin \ 12n+2 _5+•(Z)I.+,(Z) • (60)

Equation (60) can be rearranged so that with the aid' of L'Hospital's theorem,
we can get a representation of the error when v becomes a positive integer
or zero. We do not give this result. However, for arbitrary v , we always
have

or('2nZ+6-,o;z2 /4>,)E (z) W (-),-(z,.) +2r(n+1_2+v) Im+v(z)lF ( 1+2 ,_n+.,-+lZ2/4)

+2(-) m (Z/ 2 ) 2 n+2 4_ - .o +(z/ 2)2(6

r(2n+2-+v) I2n+2 +(Z)m4(z) + r(2n+2-,8+,v)r(2n+3-5+,)' (61)

where s = n-6+v(s=b) V is (is not) a positive integer or zero. Clearly
the baclomad recurrence scheme is convergent. Further, for n sufficiently
large, n >>m , the relative error is essentially independent of m . For
convenience in the applicaiions we record the formula

)n,22n+2(n~l :F2n÷2+?) Im+,(z )[l+b(n-1)]

= (ni-i) r(2n+2-.6+v)

2 (-)m+b (z/ 2 ) 2n +v
+ r(2n+2-8+v) I2n+2 -6+v(z)lym+(z) . (62)

16
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Proof: We have need for the f'ormula. [1, Vol. 1, p. 216]

Ia(z)Ib(z) r~~~~~)0F1(alz/)F(~;2

a+b1
(z/2) F23 ( a+b-'l)/2, (a+b-+2)/2 jZ2,) (63)

r(a+l)r(b+l) 2 a+l.,b+l,a+b+1

where it must be understood that none of the numbers a+1 ,bf-1 a+b+1

is a negative integer or zero. Now let

A,(z) = F,(m+v+l;z2/4) 0F 1 (2n-1+6-v;z
2/4)

r(m+v+l)r( -2n-1+6 -v) I (~-n16vz
(7/2I+(z)1 2 n1 + m(Z)

6 2n+2-6-m
_ -)rrf(m+\r+1)(z/2)

- f(rn-2-6+v) sin \n M Z)v 2nl1+S(Z

7Zakz 2k (64)
k- 0

Then

(\n + 2-+8 k -\n 2 +\

(-2n-1+8 -v)k(m+v+1)k(2n++mk ,()

whence

ak=0, k =1 +[n MT-1+ ,.. 2n+1-8-m

1T



M+) r(m+v)r(m+v+l)

81c-2+26 (n 3 r+ -28

X)k 2 , k , k k0 (66)

Thus

n-M-1+6: n/ m-1+6 -n+ M+
Am(z)2-2z)

\(-2n-1+8 -v, m+vý- 1,-2n-1+6 +m

+ (.. ~rP(n+-v+1) (z/2) 2r-8-rn-
r(2n+2-6-'v) sin \n Im-v(Z)I2n+2-6+,j(z) , (67)

and in view of (23), we have the alternate representatio~ns

Am(z) T8r (rn+v+l)(z/2)2 2  Ir IMvz (-) 6K~n4i 8 +6+(z) + 12n+16+\j(z)jr(2n+2-8+v) sin vff 17z) 2

+(-) a nr~iav+l)(zI2) 2n+2-6mI -mmvz)+Ivz
+ f(2n+-r26+v) sin \I2n+2-8+v(Z)I -"XTTz I~~ )

(68)

As a remark aside, the combination (26) and (68)~ yields (37) and so we have
an alternative proof of (37). Using (45), (59) and (67), we can wr'ite

18



Ff-4 2n1+8V;Z214) (1)(z) =I (z)FP~n)(-2n-l+8_v~z2/4)
SJ m+V 0 1

-(z/2) [+%JF (m±'v+i;z2/4) F (-2n-l+6-v;z2/4)
rtwmvi L 10 01

(.) ir (m+v+1)(z/2 )2n+2 4-m I ] Ii
r(2n+2-6+v) sin T-T-(z)I2n+ 2 -6++(z)

and since

0oF(-2n-1+6-v;z
2/4) - OFl(-2n-l+_v;z 2 /4) = (_)n,(n+.-.6+5,) F

(n-,l)!r(2n+2...+v) 1 n2 , -n8 -V

(69)

we readily find the first part of (60). The second part of (60) follows
from (23) or it could have been found by repeating the above analysis with
the second equation of (68) in place of (67).

Next we briefly examine the situation when v is a positive
integer or zero. With v r+e , the F2 on the right-hand side of (60)
can be expressed as

lF2(l+2 -,- ,,+5 --V z2/4) = 1 8+r (1 Z2,-n+8 -,' Z/4) + " (z/2 )2k

lnr2, n- \+ k=_n-8+ r+l (n+2)k('n+8 -%)k

f -+r(112/4\ r1+l+6 T( 1 z2 2ii+2-28+2r
= - +r1•/+ (-)n +u(n+l)'(z/2)"+'+r

12 (n+2,-n+6_8 jIZ4 sin Tvr(2n+3_-6+r)r(n+l-8+v)r(l-e)

>K F2( 11Z2/4) (70)

19
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The first term on the right-hand side of (70) is defined when 0
When the second term on the right-hand side of (70) is multiplied by the
coefficient of the IF2 in (60) and the result is combined with the term
involving Im+v(z)I2n+2_6+.(z) in (60), it will be seen that one can pass
to the limit as e-i-.O . The final expression is not of great interest
and we cunit further details. Equation (61), which is important for practical
considerations (see later numerical example) readily follows from (60) and
the above remarks, and (62) is but a simplified version of (61).

Remark: Let v n and z be fixed so that E'N.,(z) is a function of
m only. Then 4EN,(z) satisfies the recurrence formula for WmV(z), see
(21). This is evident from (30) and confirmed by (60).

Case II. Let

F(N)(z) = I (z) - i(M W(z) (71)

where 14)(z) is given in (50).

Theorem 14. If neither v nor v+1 is a positive integer or zero, then

-z 2n+l-68-2n-3/2+8- z (N)
e \-4n-3+26-2v12_ ) Fm,,(z)

(2z) 2n+2-6 (,+_)L +2- e'Z+ z)_½.l

+ (2n+2-8) (2n+2-5+2v) 2n+2-6 22n+3-6 ,-2n-1+8-2vz

)8T (z/2)2Yirr 2-6 4+vTi_(Z)I 2 n+ 2 - +(z)

r(2n+2-6+v)sin (72)

which is the same as the right-hand side of (60).

If v*½ is a positive integer or zero, call it r ,we have

20
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-z 2n±1-61-2z1-2+6-r 2\(i

e Fl. 4n-4+26-2r Mrlz

( 2z) 2n+2-6 (r+1)2,l+2-6_ e-z lmr.(z) xr~ 2
-- (2n+2-6).(2n+3-6+2r) ",n÷2 -6 nr~2243.. -2-+ 2

6+r+l 2n+5/2-6+rI
OF) (z/2) : 2nj~r+-5i2 -6(7 1

F+r(2n+5/2-6+r) [P~r m+r~l(z) I-Im-r4(z)J

In particular,

(N) ~ ~ / z ;?__ _ __ _ __ __ _ __ _

_ T 6(2r)e (z)2
4 n 2  1+~r)] (4

-z~- K2n+1/2- (z)-326 '

2n+2n+ -26

(22n+22-8)z/2

21



where t = v Nt-2n+l-6+2v) if v is hailf a positive integer (is a posi-
tive integer or zero) and where t = for all other v .Clearly, the
backward recurrence scheme is convergent.

Further, for n sufficiently large, n»> m , the relative error is
indiependent of m For convenience in the applications, we record the
formula

_(2 z) 
2n+2 - ( ) e+L_

F(N)(z))2n+2- _.r 1 e+ I O~-
M"j (2n+2-5):(2n+2-6+2v) 2 +2-6 m+v~ZL On

2-m+8 (/)2n+2-6+v

1'(2n+2-.6+v) 12nl+2-6+\(z)Kmf+v(z) v -L(6

Proof: Let

e F12 e F., -\j12v
-U,~ l¼(2m+21V+l Zit 2e ý(I if neV bj~ bkz (77")

In view of (1) and (12), Bin,(z) = Am(z) where Am(z) is given by (64).
Hence bk =0 for k odd and b2k = ak where ak is given by (65)-(66).
The analysis proceeds as for Case I and we find (72). Notice that the
right-hand sides of (72) and (60) are identical.

For the proof of (73), let VmV(z) be the entire first term on
the right-hand side of (72), that is, the term involving the 2F2 .Let

I r+-ý+e ,r = 0,1,2,......Then we can write

Vm v(z) =-C(z)(r+l+e)2n+2 -C[2n+3l-8,l -2n-1+8 -2vi 2z)

2n+2-8 +2r 2k1G k
+ c]kz + ci z

k--ri-1 k-=2n+3-6+2r

()2n*2-6 - _I(z (i-)

C~ ) = (2n+2-)i(2n2 6+2 v) 2n 2. k = (2n+3-.8 )k ( 2n -l+6-2v) k

It is easy to pass to the limit when c-0-> and (73) readily follows.
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Now for arbitrary a and b
I

aI.(z) + bj1(z) = (2/Trz) 2 (a cosh z + b sinh z)
22

Further, from (16), with n replaced by 2n+1-6, see also (17), and

S=-, gn(z) reduces to

2 F0 (-2n-1+6,2n+2-6 ;-=T% (Tn/2z)2e zK 2 + 3/ 2 -8(z)

Use these data with r = -1 and m = 0 in (73) to get the first line of
(74). Derivation of the second line of (74) is trivial and details are
omitted. Since

1

r (z) = (2rz)-2eZ(j+-2z)

1 z (N)
it is easy to show that (2nz) 2 ee i 1 (z) is the main diagonal Pade approxima-

tion to 1 + e-2z When allowance is made for a change of notation, (74)
is a previously obtained result [i, Vol. 2, p. 74, Eqs. (34), (35)].

When v = r+e , r a positive integer or zero, we can rearrange
(72) after the manner of the discussion surrounding (70) and use L'Hospital's
theorem to get the limit as e--)0 . The result is not of immediate interest
and we omit details. The statements (75) and (76) are readily derived and
here too we skip details.

(N)

Remark: F(N)(z) with n , v and z fixed and m variable satisfies theS~m,v
recurrence formula for epmv(z) , see (21). This feature is clearly depicted

by (72). In both (62) and (76), the term involving Km+V(z) is of lower

order than the term involving Im+ (z) . Neglecting the former term in each
equation, we have

23
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Theorem 15.

F(N) - (n+l):r(2n+2-6+2v)

n+l I 6 z
(-) (~(/)e- 78v+( [1+0(n-1)] , V 4 (78)

n V+6

This shows that there is little difference in the accuracy of the
two schemes for the evaluation of Im+v(z) . Computation-wise, if the

backward recursion scheme is used, Case I requires less operations since
the associated normalization relation, see (38) and (39), uses the sequence

(N)l(z , k = 0,2,4,... , while the Case II normalization relation, seeS(4),emlos (N)
(46) and (47), employs {k, (z Y , k = 0,1,2,... . Also to get IV(z)

by the Case II scheme, ez must be evaluated. On the other hand, if IzI

is large, R(z) > 0 , one often wants not I,(z) , but e-ZI,(z) . The
latter is automatically furnished by the Case II technique. It appears that
for the same n , the Case II procedure might be more accurate than the

Case I scheme even for moderate values of Izi , R(z) > 0 , in view of
the presence of ez in the numerator of (78). Also, Case II is favored
when R(v+6&) < 0 . Improved information cannot be derived from (78) as
the estimate is for fixed m , v and z . For error analyses it is sug-
gested that one use (62) or (76) as appropriate. Further discussion is
deferred to a later part of the paper where numerical examples are presented.

If z is pure imaginary and v is real, then z-'I (z) is real

and definitely the Case I procedure is better than the Case II scheme since
the former requires real arithmetic while the latter demands complex arith-
metic.

If only I(z) or only e-ZIV(z) is required, use of the
rational approximation scheme or the equivalent backward recursion scheme
demands about the same number of operations. In the absence of a priori
estimates of the error, the rational approximation scheme employed in the
following fashion is preferred. It is sufficiront to consider the Case I
situation. Compute *n(z) from either (3) or the combination (37), (44),
and hn(z) from (5), for n = 0,1 and 2 . Compute subsequent values
of *n(z) and hn(z) by use of the recursion formula (12). Comparison of

Sn(Z)/hn(z) with tn+1 (z)/hn+j(z) affords an estimate of the error. If

one requires Ik+v(z) or e Ik+,(z) for k = 0,1,2,...,r , then obviously

the backward recursion scheme is highly advantageous.

24
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Case III. Consider

G (N)(z) I (N) (79)
Im)V =Im+Vz m+'

(C) (N) (Z)
(N) V ( M) (z
-m+V(Z) (N) (80)

where (N)(z) is given by (37).

Theorem 16.

6+m • (m-2) ((- 2n+2-6+v(z1cp0,v z

G()z - (N)m~v po,v(z)
- 5 +mr (z 2n+2-m-6

r(2n+2-6+v) ' 2n+2 (z+v Lmn(Z)

m ll/ m-i m-2 I 2)
2 3 \lvm,v+l,l-mI

L.,n(z) = L 1 -n+A -n+1 - i 2\ 0 < M s 2n+1-8 z (81)

and it is lar that the computational scheme is convergent. Further, if
we treat GJ" (z) with n , v and z fixed and only m as a variable,m'V

then (')mG(N)(z) satisfies the recurrence formula for tpm,v(z) , see (21).

m'V
Thus

(N) G(N) 2(m+v+l) (N)
Gm+2,v(z) m,%) - z Gm+,(z)

6+1

(N) (N) ~ 2n+2-84+v(
GN0 ,(z) = 0 G 1 'V(z) ( 1 "(N)(z) (82)
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Finally, for convenience in the applications, we record the formulas

rn- i - m-2

S2- 2' 2 z2

(N) (-) (z/2) 2n42+ mr(nx+v) 2Fi -v-m,'v+1,l-m [1+0(n-1)]
mv ) r(2n+2-.6+v)r(2n+÷3-6+v)r(v+l) "I,(z)

(83)

(? \) 7 (2n/f21 T)r2 n+3 -8 +v-~) +m) 1+n)](4m,v f(2'n-? -5 +v)r (2n+3-6 +-)

Proof: Using (37), (67) and (69), we find

47L* 11) (z)O k*' J(z)u, m1 'sn"•' v 2n+2-5+V (z)[Iiv(z)I-M-V (z)'I'- (Z),m+\,(z)I]

O'V m "i sin vrm

and in view of (23)

((N)(z)G(N) (z) I (2n+2-6+v(z) {z [(-) mI\(z)Km+v(z) - I+,(z)K (z)]}

From (26), the portion in curly brackets in the latter equation is

(_)"' m2)(z) . Hence the first line of (81) is at hand. The remainder

of (81) follows from (37). The first line of (81) coupled with the dis-
cussion surrounding equations (21)-(25) produces (82). By the confluence
principle, see [1, Vol. 1, p. 50O

(2/z)N+Ir(N+ 2 +v) [FI ( N+ lN
c z= r(v+i) 3

N+vl(2/z) fN+ 1 (v+2) F (+1~z2/4) [1±Q(N-1)]

(2/z) N+-- r(N+v+2)IV(z)[l+O(Nr) 1 (85)
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rI
whence (83) and (84) readily follow with the aid of (33).

Error-wise, it is difficult to compare Cases I or II with Case III
without some simplifying assumptions. If n >> m , using (33), (62) and
(83), we get M- -lm-1 M-2 i

LmlL2 1m2)GNv" 2F3  l-v-m,v+l,l-m
z)Gm± (z/ 2 )2 mI 2 2  2vnm()!(m~v) ___________

(N) r (2n+3-6 +v) (n+1- +v)r (v+l) I(Z)I+(z) (n

E (z

2n
(z/2) 6+1-v

- F(2n+3-6+v) (86)

and so Case III is superior to Case I. Now suppose m is sufficiently
large so that in (62), the second term dominates the first term. This is
certainly the case if m = 2n+i-6-d , d << n , in view of (33) and (34).
Then

G~(z) ( z/2. -rn-
m ) (z/2)i"mnv,(m+-v) [1+O(n-1)] [l+0(m-l)]

E (N) W 2K.,,,(Z)m,vtz

= (2/z)6 [l+O(n'l)] [l+O(m')J , (87)

and under these conditions there is little to choose between the two cases.
Overall, it appears that Case III gives better accuracy than Case I. How-
ever, for Case III, one must know I,(z) while for Case I no such knowledge
is required. For all z > C and all v , 0 g v ! 1 , coefficients are
available to facilitate the rapid evaluation of J,(z) and Iv(z) , see
[1, Vol. 2; 6,7,8]. (Actually, much more information is given in these
sources.) All of this can often make the Case III approach rather attrac-
tive. See the numerical examples.

Next we consider the round-off error.

Cases IJI. It is sufficient to trace the effect of a given round-off error
iA a single entry of the table generated by the backward recursion process.
Thus let A be the symbol for the round-off error in @ . Suppose that
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AC(N)(z) = 0 for m, N+2,N+1,..., S+2 ,
mM "

(N)
TM,(Nz) = for m = S+1 ,(88)

where S 2s-y and y is 0 (is 1) if S is even (is odd). Hence

(N) (S)
&m,v(Z) Um,v I m < 2s+l-y (89)

AO(N)(z) = Ws)(z) . (90)

For the Case I procedure, we have

( WN)) (N) _- (, S)

a m+v[z) e(N) (z) - e(N)z) W - W(S(z)

(N) (s) z (s), , (N)(z
1 (Zm,vz- •Zm,v

{,(N) W 2 { -(9l)z_

(S) ~E (N)W1

(s) o (z)(z

waE m'v (z I

L 0 8(N1 (z) (91)

and these equations also hold for Case II provided E is replaced by F
If S = N , that is, s = n , the round-off error is nil. Indeed, this must
be since the starting value q(N is immaterial. It is clear that ifN+l,v

all parameters and z are fixed, then the round-off error decays to zero
as n--* . For n sufficiently large with respect to z , IaI< 1 and
we can take Il-E(N)(z)/E(S)(z) < 2 . Also it appears heuristically that

E(S)LW ! (z) ! ý,(z) -"z/2)v/r(v+l) (92)

28



Thus on this basis,

AN. (z)( ) • • ,I(z) - (z/2) /r(,+l)j (93)

is an approximate bound for the round-off in a single entry of the set of
numbers generated by the backward recursion process. If w is the( maximum
round-off error in each entry, then the total round-off error in i+(10(z) is

approximately bounded by N times the right-hand side of (93), Thus the
round-off error is insignificant, and it is easy to estimate the number of
extra decimals which must be carried so that the total round-off error in
the process lies within the error when the arithmetic is exact. Equations
analogous to (92) and (93) for Case II are easily derived and we omit details.

Case III. We have

ti (z) (N) 
Vkz)A(z)M[+,,>c (P<' oN( ) ( )( ) ,,,P S ( !

ON (O,V O,v

'AN'S (z) (N) (z)c ((z) (s)Cz (N) (9)m,V •O,V -% •0,• v ' m: V

Using (26), a straightforward computation shows that

N,S 
IAm,V( z) =-)z2 [12s+2-y+v ( z)Kn+2-8 +v( z)+(- )6 +y• i2n+2_ +',( z )K2s+2.y+v (z)]

>X [Im(z)(z) + (-)I'I (z)Kl+•(z)]

,m+y+l (N) (m-2)(
=- 2s+2-y,\,OV z) m > 0

0, m= 0 . (95)
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Thus

rn+y+l. (N) (N) (m-2)

(N) M() V (z (96)

Ai~Z)(N) (N) w 0  (z

O'v M'V ( (N) (Z

obviously, this is nil is S=N or if m=O01 Now using (37), we find

(z)+2y~ - z2~~r(+l)r(m~+l)

(N) (z), Nr(2n+2-s6+vj)r(2s+34 +v)~

[n-s- 1+8 _Y( n+s+ 1+6-Y,-n+s+l+ 6-Y2
F 2 K 2 2 z)
2 3ý-2-1+-v,2s+3-Y+\v, .2n+2s+1 4-8-YI

F 2I /(2n+-L-,n+ z2) Fln I 2n lt
2 3 1 -2n-l+6-v,v+l,-2n-_L+6 2 3  k n- -v,m+v+l, -2n-1+86+m z

ý(97)

and it is clear that rounding errors are insignificant. indeed, if all

parameters and z are fixed, then the round-off error tends to zero as
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FOFUUAS FOR J'(z)

As previously remarked, the analyses for Iv(z) hold throughout

the cut complex z-plane, -n < arg z 5 TT , and throughout the cut complex
v-plane farg v'< I , although it is sufficient to have 0 : arg z 5 N/2 anrw

R(v) > -1 . Nonetheless, we indicate how to get results for JV(z) directly

and to facilitate use of our findings, it is convenient to restate some of the

key equations. We omit discussion of Case II since it requires complex arith-

metic to generate J,(z) which is real when z and v are real. In any

event, the reader should have no difficulty in establishing the Case II equa-

tions for J,(z) once it is observed how this is done for Case I.

All developments for J,(z) are readily gotten by use of the
e quati ons

Im+u(zein/2) = e-i(m+vT/2J m+V(z) , (9e)

-iTr/2 L -i(m+-F.)/? (1)
K.j( z e ) ,j L ~2e H ý"(z) ,(99)

Hlz (z)J z) + iYm+\(z) (100)

m ,-m

Ym+V(z) = (-) csc \$.I[(-) cos vr Jm+v(z)-J_m_v(z)] , (101)

where now in the J,(z) analyses, -T,/2 < arg z < 3r/2

It is convenient to introduce the following notation. Unless

indicated otherwise, if A is used to signify some function or equation

in the developments for I,(z) , then A* is used to signify the correspond-

ing function or equation in the developments for J,(z) . In illustration

Jv(z) = (z/) 0•F,1v+l;-z
2/4) , (1)*

"and both Jm+v(z) and Ym+v(z) are solutions of the difference equation

* 2(m+v+l) * *

Pm,v(z) = z Mtl,v(z) - Tm+2,(z) . (21)*
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Also

(z ) +V
%:()= rmvll+°(n-1) , (33)*

Ym(z) - (z/2) -m'Z' F(m+)[1+O(m-l)] (34)*

We now present the key results pertinent to J'(z)

Theorem 1*.

(z 2 n S*(z))
J'---() *(Z) R6(z) - (2)*Jz)=r(v+l)

hn(Z) hn(z)

where and hn(z) are given by *n(z) and hn(z), see (3)-(5),
provided there we replace z 2 by -z 2 

, that is, replace X by -X
Further, Sn(z) and Sn(z) are both given by (8) and RA(z) = (-)nRn(z)

see (10).

Theorem 2.* Both *n(z) and hn(z) satisfy the same recurrence formula

(11) if there we replace X by -X .

We state without proof the following equations.

(N)*, , (z/2) 2nm+.l-6 r(2n+2-6+v)
•m,•v (z) r(m+v+l)

r m-1+61 / m-1+6 .m+62F[ "2"n T 'n2 -z 2ý (7)*
X :E k2n-l.-\,6 ,m+v~l,.2n-_!-6+m"

e*(z) (z/2)V - (21v4,j)r(lv4-v).(3)
r(+) ('+l)k: J 2 k+(z) (3)*

k-0

e(N)*(z)= (2/z)i-6 ('J+l)n+1-6 hn(z) . (39)*
n!
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Theorem 9.*

k (z~ 8()* () - (z)

(N) ~ m~v (z )) m 'V 2n ~~~nl6mZ
im~(Z)=V (N*Z (N' (z/2 h(n)-2--+

[nMF+ 1 (-n-l-+6 -v;-z
2/

C(N) (N)()2115--21 ~ 2

Ez mMz = mez()- ~rz (45)*

(N)
where j,+,(z) is given in (45)*.

Theorem 13.* If v is not a positive integer or zero,

vn(-2n-l+6-V; -z2 /4 )E(N)* (z) + .(Z/2)...r(n+1-5+v) Jm+v'' lF12 2n+- ~2 /4)

0). ~~mv (n+1)(2-26+) z

r()m /2)2 8 J-m-v(z)J2n+2-6+v(z)

-sin vrrr(2n+2-6+v)

7(/)2n+2-8+v () z

r(2n+2-8+v) 2n+2-.6+V m4-v(Z

+tan vrTr (2n+2-8+-V) Jm+,v(z)J2n+2 -8+v(z)*(o)

Equation (60)* can be rearranged so that with the aid of L'Hospital's
theorem, we can get a representation of the error when v becomes a posi-
tive integer or zero. This result is omitted. Hoveve.±', for arbitrary v
we always have
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2n--2
(N)*(z/2) [F(n+1-6+,v)( 1 2

n (N) *22 1. 1+ )._2/4)
OFl(-2n-1+6-v;-z 2 /4)E(z) = W (n+1).'(2n'2-6+v) J(Z)FS n+2. z/.

mv xn(~J~(n2-+ J4-V 1 2n+ 2, -fl6-v ,

2n+2-.6 +%" z ( J2n+2-6+v(z)Ym+v(z)
J'(2n±2-.8+v)

+ (((,/2)2n) (611.
p(2n+2-6+v)r(2n+3-8+v)

where s = n-5+v (s = o) if v is (is not) a positive integer or zero.
Clearly the backward recurrence scheme is convergent. Further, for n
sufficiently large, n >> m , the relative error is essentially independent
of m . For convenience in the applications we record the formula

(N)* (z/2) 2n+2 (n+l-6+v) r
S( -(n+l):r(2n+2-6+v) J 1',(Z)1+0(n-1

,(z/2) n2-6+ 6)
- r(2n+2-6+v) J2n+2_6+v(Z)Ym+v(z) . (62)*

(N)*

Remark: Let v , n and z be fixed so that mv (z) is a function of

m only. Then E'N'*(z) satisfies the recurrence formula for rm,\(z)

see (21)*.

Let

(N)* INvZ)-()
GMv (Zz)z - jn,+v(z) (79)*

mm~v j = , cp"N),,(z)

(N)*(z,

where Tm,v (z) is given by (37)*.
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Theorem 16.*

2n+-6V(ZCP(m-2)*(Z
Gý (Z) ='

r(m+v)(z/2) 2+--
r(2n+2-.6+v) J2n+2 -6.+vk~z)Lq,n(z)

m -ilri m~-2

q~~) 2F. l K-v-r,v+i,i-m 0 < m 2nl-s-- . (81)*
8- 2 8

2F3  ý-n16 )~,-n16
(N)*

Further, Gm,v (z) satisfies the recurrence formula for cpm+v(z) ,see (21)*.

Thus

G,(N)* 2(m+v+l) i(N)* - (N)*

G(N)* ()=0,G(N)* 2n+2-6+V(z) 8)GO,'( = G,v (Z) = (N)*

Finally, for convenience in the applications, we record the formulas

(N*(z/2) 4+ 4-2 8+2v-mr(m+ Fv)-- 2 3 -2 Z

Gm'v () r(2n+2-6+v)r(2n+3-6+\))r(v+l) J'(z)

(N)* (z/2 ) 
4n+4 -2 68 v-rn(m+v)- [1+0(m1)j [1ý-o(n1 )] (84)*

Gm,9, (z) r (2n+2-6+v)r(2n+3-6+v)
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NUMERICAL EXAMPLES

Let

N 5 , n 3 , 6 1 , z 2/3 , . = 1/3
Valus of (N) (Z) e(N(z an ()

Values of •mz) , N)(z) and O(N)(z) are given in the table below.

(N)

6 1
5 19(N4 159 e((z) = 880 75,20/81

4 3984

2 40145 CI N)(z) = 1 38952 97360/6561

1 2 84999
0 11 80141

Since

(/) -2/3
= 0.77645 82114, e 2 0.5141 71190

r(v+l)

the Case I and Case II approximations are

0.84272 08930 and 0.84272 10326

respectively. To 10 decimals

1r/3(2/3) = 0.842772 08819

Thus the errors in the Cae.e I and Case II approximations are

-7 -

-0.111*10"7 and -0.151'10-6

respectively. Using (62) and (76) each with O(n 1) and the term involving

Km+v(z) neglected, the approximate Case I and Case II errors are
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-0.ii0i0- 7 and -0.149"10-6

respectively.

For a second example, let

N=5 ,n 3 ,6 , z 2 , 0

Again we illustrate the Case I and Case II schemes. We have the following
r data.

m •(N)(z)

6 1
5 6 e(N)(z) = 611

4 31

3 130 Q (N)(z) = 4515
2 421
1 972 e 2 = 7.38905 6099

0 1393

i(N)

Case I m Case II Im(z)

0 2.27986 9067 2.27972 4285 2.27958 5302

1 1.59083 4697 1.59073 3672 1.59063 6855

2 0.68903 4370 0.68899 0613 0.68894 8448

3 0.21276 5957 0.21275 2446 0.21273 9959

4 0.50736 4975. 0 0.50733 2755,10" 0.50728 5700"10-1

5 0.98199 6727.10-2 0.98193 4365"10-2 0.98256 7932.10-2

6 0.1630C 6121"10-2 0.16365 5728"10-2 0.16001 7336.10-2

Error Relative Error
m Case I Case II Case I Case II

0 -0.284" 10-3 -0.139.10-3 -0.124. i0-3 -0. 610.10-3

1 -0.198.10-3 -0.968•10-4 -0.124•10-5 -0.609 .10-4

2 -0.859•10-4 -0.422.10-4 -0.125•10-3 -0.612. 10-4

3 -0.260.l0-4 -0.125.10-4 -0.122.10-3 -0.587 * -L" i

4 -0.793-10-5 -0.471"10-5 -0.156•10-3 -0.929• 0"4

5 0.571"10-5 0.634" 10-5 0.581"10-3 0.645.10-4

6 -0.365. 10-4 -0.364. 10-4 -0.228"10- 1  -0.228,10-1
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Here the entries in the Im(z) column are correct for the number of
decimals given.

Using the first lines of (62) and (76), each with 0(n-1 ) and
the term involving Km+v(z) neglected, the approximate relative error

for Cases I and II, respectively, are -0.116-I.0- and -0.537.10-4, respec-
tively.

In the table below, we record the approximate errors obtained by
use of (62) with 0(n-1) omitted for m = 6 and 5 and by use of (21), see
the remark following Theorem 13, for the lower values of m . This is
called Case I, (62)-(21) in the table. We also present the analogous Case II,
(76)-(21) data. In each instance known tabular values of Km(2) and 17(3)
were used. In practice, we suggest using (34) or the lead term of the
uniform asymptotic expansion of Km+v(z) developed by Olver [9]. For

I2n+2-6+v(z) , use (33) or the lead term in the uniform asymptotic expansion

for this function which is also given in the source just cited. We also

suggest that computation of the gamma functions be simplified as follows.
With IR(a)I < 1 and r a positive integer, we have

+r+v+l) )]
r(r-++l) = r! F(r+l) - r-ra [l+0(rl1

and for r sufficiently large, we neglect 0(r- 1 ) . The approximation is
of course superfluous if • = 0 . If c = ± 1 , the approximation may still
be used though known tables of the gamma function for half an odd integer
may be preferred [10]. If more precise values of the gamma fAnctions are
required, see [ll.

Approximate Error

m Case I, (62)-(21) Case II, (76)-(21)

0 -0.264"10-3 -0.114.10-3
1 -0.184.10-3 -0.765-10-4
2 -0.797.10-4 -0.373•10-4

3 -0.242•10" _ -O.i0.10-4

4 -0.723.10- 5  -0.410.10-5
5 0.475.10-5 0.536.10-5
6 -0.310.10-4 -0.309.10-4

For a final example, we illustrate Case III using the data of our
second example. We get the following numbers.



(N)(N) (z) Approximate Error
Fm m m+V (82)-(83) (84)

0 2.27958 5302 0 0 0

1 1.59063 6693 0.162.10-6 0.121•10-6 0.276•10- 6

•:2 0.68894 8609 -0.162•106 -0.121•10-6 -0.276•106

35 0.21273 9475 0.484"106 0.363-106 0.551-10.6

4 0.50730 1826"10- -0.161.10-5 -0.121.10-5 -0.165.10-5

5 0.98187 4502-10- 0.693.10-5 0.520.10-5 0.66110-5
6 0.16364 5750"10-2 -0.363"10-4 -0.272.10-4 -0.331.10-4

In the above, the approximate error (82)-(83) means that G(j(z) is

approximated by (83) with m = 1 and 0(n-1 ) neglected, and subsequent

approximate values of the error are found by use of the recursion formula
in (82). Use of the recurrence formula in this fashion is stable as the
magnitude of the error isan increasing function in m . Also Eq. (84)

means this equation with O(M- 1 ) and 0(n-1 ) neglected.

A measure of the accuracy of th; three schemes treated can be had

by use of normalization relations. Thus if the Case III procedure is employed,
(N)

then (38) and (46) with Ik+v(z) replaced by ik+v(z) are available as

checks. Similarly, equations (46) and (38) are available as checks for the

Case I and Case II techniques, respectively. For some other useful normali-
zation relations, see Li, Vol. 2, pp. 45, 46).

Analyses of the error in the backward recursion process for the

solution of a general second and higher order linear difference equation
have been given by a number of authors. Some authors have studied the
case of Bessel functions directly. We make no attempt to survey the various

contributions here. Pertinent references are given by Wimp [41. Suffice it

to say, none of the analyses have the precision and simplicity of those
developed in the present paper. We deliberately chose N and as a conse-

quence n small (N=5,n=3) in our numerical examples to put our asymptotic
estimates under a severe test. The efficiency and realism of our error
formulas is manifest.

CONCLUDINKG REMARKS

It appears that the techniques developed here for the Beasel func-

tion I (z) can be extended to analyze more general second and higher order
difference equations. In particular, it would be useful to have analogous
results for 2 Fl(a,b;c;z) and its confluent forms. This we intend to do

in future papers.
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